• 公众号
  • 手机端
24小时销售热线 18600464353
新闻资讯 News
最新新闻 / News More
319
2025 - 04 - 14
来源: 仪商网  在工业4.0与物联网(IoT)的驱动下,电子测量仪器行业正经历从“单一功能设备”向“智能测试生态”的转型。人工智能、大数据等技术的融合,不仅提升了测试效率,更催生了远程协作、预测性维护等新模式。本文解析电子测量仪器在智能化转型中的技术路径与应用实践。  一、智能实验室的自动化测试革命  传统手动测试模式正被自动化测试系统(ATS)取代。例如,罗德与施瓦茨推出的SMW200A矢量信号发生器,可编程模拟复杂电磁环境,并自动生成测试报告;是德科技的PathWave软件平台支持从设计到量产的全程数据闭环管理。某消费电子企业引入自动化测试方案后,产品研发周期缩短40%,人力成本降低60%。  二、物联网设备的全生命周期管理  在物联网领域,电子测量仪器需应对低功耗、多协议兼容等挑战。无线综测仪可同时支持LoRa、NB-IoT等协议的并发测试;电源分析仪则用于评估传感器节点的能耗曲线。某智能家居企业通过频谱分析仪优化Wi-Fi模块的抗干扰能力,将设备断连率从5%降至0.3%。  三、国产化替代与产业协同创新  在中美科技竞争背景下,国产电子测量仪器加速突破“卡脖子”技术。普源精电(RIGOL)的12位高分辨率示波器已实现国产ADC芯片自主化;鼎阳科技推出的微波信号发生器覆盖至40GHz频段。政策层面,《中国制造2025》明确将高端仪器列为重点攻关领域,产学研合作模式进一步加速...
320
2019 - 07 - 29
发射—反射—接收是雷达液位计的基本工作原理,其以测量压力容器内液位,可以疏忽高温、高压、结垢和冷凝物的影响优势,以及精度较高、与介质无直触摸摸、耐腐蚀性强、可在真空环境中运用、设备简洁等特点得到了广泛应用,在液位测量中发挥越来越重要的作用。雷达液位计,还有什么是我们不知道的呢?液位的测量技术、方法多种多样,从而相应的测量工具有磁翻板液位计、浮球液位计、钢带液位计、雷达物位计、磁致伸缩液位计、射频导纳液位计、音叉物位计、玻璃板/玻璃管液位计、静压式液位计、压力液位变送器、电容式液位计、智能电浮筒液位计、浮筒液位变送器、外测液位计、超声波液位计等等。依据介质和现场条件的不同,各种液位计各展优势,形成了以个多元化的局面。雷达液位计采用发射—反射—接收的工作模式。雷达液位计的天线发射出电磁波,这些波经被测对象表面反射后,再被天线接收,电磁波从发射到接收的时间与到液面的距离成正比,关系式如下:D=CT/2D——雷达液位计到液面的距离C——光速T——电磁波运行时间雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可算出液面到雷达天线的距离,从而知道液面的液位。在实际运用中,雷达液位计有两种方式即调频连续波式和脉冲波式。采用调频连续波技术的液位计,功耗大,须采用四线制,电子电路复杂。而采用雷达脉冲波技术的液位计,功耗低,可用二线制的24VDC供电,容易实现本质安全,精确度高,适用范围更...
321
2019 - 12 - 12
一般来说,物位计,液位计,料位计,雷达液位计,雷达料位计的这些测量设备的总称叫做雷达物位计。只不过叫法不同而已。和其它叫法的唯一区别就是测量的物质不同。雷达物位计和物位计是指固体和液体都能测,而雷达料位计和料位计一般是测固体,雷达液位计和液位计一般是测液体。雷达物位计又可以分为普通型的导播雷达物位计和智能雷达物位计,防腐行的棒式雷达物位计。固体和粉体通常都用智能雷达物位计,如(煤矿,炉渣等)。而液体通常用导播雷达液位计如(汽油,成品油等)。有腐蚀性的用棒式雷达物位计如(盐酸,硫酸等)。雷达物位计原理是以高频微波脉冲通过天线系统发射并接收,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。一种特殊的时间延伸方法可以确保稳定和精确的测量。即使工况比较复杂的情况下,存在虚假回波,用最新的微处理技术和调试软件也可以准确的识别出物位的回波。
联系我们
北京精诚瑞博仪表有限公司
销售热线:400-6616-819
公司总机:010-53108563/65/68/69
总部传真:010-53108566
总部地址:北京市昌平区科技园区创新路27号3号楼2层
2022年6月1日,除了是各位“宝宝们”的儿童节,还是我国首部专门保护湿地的法律——《湿地保护法》正式施行的日子。环保盛行的今天,湿地保护也算是正式迈入法治化轨道,湿地保护力再度升级!   我国加入《湿地公约》已有30年,长久以来,我国都在大力推进湿地保护与修复。今年1月,国家林草局发布的《中国国际重要湿地生态状况白皮书》也曾显示,我国国际重要湿地生态状况总体保持稳定,水质呈向好趋势。可以看到,湿地与水是互为依托的存在,是休戚与共的环境共同体,两者更是环境提升的重要内涵。保护湿地,同样意味着保护水资源。   从水污染情况来看,我国水环境提升工作还要花大力气:5月末,生态环境部在例行新闻发布会上发布了《2021中国生态环境状况公报》,文件显示,全国目前仍有1.2%的地表水国考断面水质为劣Ⅴ类,少数地区消除劣Ⅴ类断面难度较大,部分重点湖泊蓝藻水华居高不下,全国地下水V类占比达20.6%。   而从水资源的这个层面来说,“短缺”二字仍是制约社会发展的重要因素之一。   其一,水资源分配不均,总体来说南方多于北方地区,东部多于西部地区。   其二,虽然根据水利部发布的《2020年中国水资源公报》数据显示,我国水资源有效利用率得到提升,但国家发改委在此前明确指出,我国水资源短缺形势依然严峻,供需矛盾依然突出。未来还要通过多重手段、技术继续推进...
发布时间: 2022 - 06 - 06
浏览次数:360
自今年年初印发《“十四五”生态环境监测规划》开始,生态环境部构建现代生态环境监测体系的步伐就在不断加快。   5月27日,生态环境监测司召开了《现代生态环境监测体系关键技术与战略研究》研讨会。会上明确,将实现高水平保护要求的高水平监测、支撑现代生态环境监测体系建设作为研究主线,以水、气、碳、生态等要素为重点,逐步拓展领域的研究范围。在刚刚举行的生态环境部5月例行新闻发布会上,生态环境监测一词亦是高频出现。相关负责人指出,“十四五”时期是我国生态环境质量由量变到质变的关键时期,为实现生态环境监测工作良好开局,2021年围绕优化、深化、强化三个特点,各项工作得以稳中求进的进行。   按照全国生态环境保护工作会议部署,现代生态环境监测体系建设将从监测评价考核、PM2.5和O3协同监测、碳监测、新污染物监测、生态质量监测、水生态监测等方面多向发力。对此,发布会就以下五个要点进行了详细阐述:   1.新污染物监测   5月24日,国务院办公厅印发《新污染物治理行动方案》,要求积极开展环境调查监测,建立新污染调查监测制度和化学风险评估制度,动态发布重点管控新污染清单,摸清新污染物的“底”。   环保圈分析称,酝酿已久的新污染物治理行动终于正式启动,对于环保产业来讲,首先释放的就是监测环境的商机。按照要求,到2023年底就要完成首轮化学物质基本信...
发布时间: 2022 - 06 - 02
浏览次数:313
随着工业仪表技术的不断发展,物位开关产品也日渐丰富。面对让人眼花缭乱的物位开关产品,究竟该如何根据根据不同的应用环境正确选用物位开关以提升整机应用可靠性就显得尤为重要。由于物位开关的测量对象主要是容器内的物料,所以在选择物位开关时主要应从物料类型、物料温度、容器内压力、安装方式、电气输入输出类型等方面进行考虑。几种常见的物位开关在物料类型方面,主要区分固体、液体物料。一般地,振棒料位开关、音叉料位开关、射频导纳料位开关均为固体类物料测量产品,音叉液位开关为液体类物料测量产品。需要说明的是,很多国产音叉物位开关,一般都标称既可以测量固体物料也可以测量液体物料,但这种固液不分的产品往往可靠性差,特别是在工况恶劣、物料黏稠、物料低密度或高密度时,这种测量仪表工作不稳定和不可靠的现象尤为突出。而进口品牌和极个别国内企业会分别设计专用于测量固体物料的音叉料位开关和专用于测量液体的音叉液位开关,其目的就是提高产品工作的可靠性和适应性。在测量粉末和细小颗粒物料时,可选用音叉料位开关,其可测密度低至0.008g/cm³,适用广泛、可靠性高。在测量带粘附性的固体小颗粒或粉末物料时,可采用双管探头设计的振棒料位开关,其能满足绝大部分颗粒或粉末状料位的测量要求。在测量粉煤灰、水泥粉等干燥固体粉末时,可选用射频导纳料位开关,该产品因具有一定的抗挂料特性而被广泛应用。在对液位,尤其是管道、小口径容...
发布时间: 2022 - 06 - 02
浏览次数:397
音叉式物位开关振幅可调,便于测量不同状态和密度的物料,适用于各种料仓固体物料料位以及各种容器内液位的定点检测报警或控制。音叉物位开关特点主要具有使用寿命长、性能稳定、适应性强、不需调校和免于维护等特点,主要广泛应用于冶金、建材、化工、轻工、粮食等行业中物位的过程控制。它不受泡沫、气体的影响,适用于各种料仓固体物料料位以及各种容器内液位的定点报警或控制。对固体物资,主要测量 能自由流动的中等密度的固体粉末或颗粒。例如,粉煤灰、水泥、沙子,石粉、塑料颗粒、盐、糖等。对液体物资,主要测量具有爆炸性和非爆炸性危险的液体,腐蚀性液体(酸、碱溶液等)高粘度液体 水、酸、碱、泥浆、纸浆、染料、油类、牛奶、酒类、饮料等。音叉物位开关的应用较广,主要针对密度范围较宽的粉体、小颗粒料,如除尘器的进、出气管堵管检测, 除尘器集灰斗料位测量,塑料,橡胶粉末,面粉,各种粮食作物,食品,化工产品等等限位测量。对于音叉物位开关的特点这一问题,大家有什么想法欢迎一起在评论区交流哦!
发布时间: 2022 - 06 - 01
浏览次数:412
在动力电池加速发展的背景之下,环保圈更多的关注点在动力电池回收及利用,而与之配套的,污废水处理也是必须认识到的一个问题。   拿动力电池中最“出圈”的锂电池来说,其生产过程中产生的废水量不小,且废水中具有高浓度硫酸盐、高COD等,成分复杂、且可能具有毒性,会对周边环境带来污染影响。如果要入局动力电池这个产业道,还要搞清楚污废水处理的要求。在废旧动力电池回收中,主要的处理方法包括干法回收、湿法回收。其中,湿法回收是被业界应用较为广泛的一款处理方法。该方法下产生的废水中所包含的大量重金属物质包括锂、钴、锰等,也同样存在较高的环境污染风险。   那么,为控制污染,更好地进行动力电池及废旧动力电池回收,污废水处理的方法有哪些?   化学法:利用化学药剂将污废水中的污染物质变为沉淀物,并进行分离去除;吸附法:利用多孔性固体吸附污废水中的污染物质,并可根据情况进行有效资源回收或污染防治;芬顿氧化法:按照一定比例投加双氧水与硫酸亚铁进入工业废水中,将工业废水中的COD物质进行氧化去除,以解决动力电池生产或回收中产生的COD污染……   还有业内预测,随着锂电池产业的迅速发展,NMP市场需求将继续扩大。NMP是一种具有污染风险的无色透明油状液体,锂电池产业常用MNP做溶剂。而在我国高分子材料产业发展之下,NMP的需求量也扩张迅速,同时也便产生了大量的NMP废...
发布时间: 2022 - 06 - 01
浏览次数:359
超声波物位计是由微处理器控制的数字物位仪表,广泛用于各种液体和固体物料高度的测量,在实际上测量上相信不少用户对超声波液位计也会有所疑问,超声波物位计是利用了超声波的哪些特质?它为什么能够准确的进行物位、液位的测量呢?原因主要在于以下的几点要求?主要体现在:1、声波在传播时,其方向性随声波频率的升高而变强,其发射的声束也越尖锐,然而超声波可以近似是直线传播,具有很好的方向性;2、超声波能够以各种传播形式,比如纵波、横波、表面波等,在液体、气体以及各类固体中传播,同时也可以在光所不能通过的生物和金属中进行有效的传播,是探测物质内部结构的有效手段;3、当声波由一种介质向另一种介质传播时,由于两种介质的密度不同,声波在其中传播的速度自然会不同,在分界面上,声波会产生折射和反射,在声波垂直入射时,如果两种介质的声阻抗相差悬殊,声波几乎会全部被反射,如声波从液体或固体传播到气体,或由气体传播到液体或固体;4、由于声波在介质中传播的时候,会由于被吸收而衰减,尤其是气体吸收强,因而出现的衰减最大,液体此致,固体吸收最小、衰减最小,所以对于一定强度的声波的测量,在气体中传播的距离,会明显比在液体和固体中传播的距离更短,而且,声波在介质中传播时,衰减的程度还会与声波的频率有关系,频率越高,声波的衰减也就越大,因此超声波比其他声波在传播时的衰减更明显。
发布时间: 2022 - 05 - 31
浏览次数:400
01 深入推进农村生活污水治理。   明确年度农村生活污水治理任务,加强对日处理20吨以上农村生活污水处理设施监测,健全污水处理设施建设运维考核制度。印发行动方案,指导督促各县区、管委会有序开展农村生活污水处理设施问题排查工作,重点排查设施基本情况、运维管理、效益发挥等方面问题。目前已建立问题整改清单80个。  02 强化危险废物规范化环境管理。   严格执行产废单位和经营单位危险废物跨省转移省市两级审批制。对医疗废物集中处置单位开展收运能力、贮存场所、污染防治设施、应急处置等情况现场检查,确保疫情防控期间医疗废物及时收运、安全处置。持续推进固废常态化治理工作,强化对危废企业监管能力,采取企业自查与生态环境部门抽查相结合方式推动排查整治。03 加强矿区历史遗留固体废物排查整治。   印发《池州市矿区历史遗留固体废物排查整治工作方案》,对重有色金属、硫铁矿等矿区,以及安全利用类和严格管控类耕地集中区域周边矿区开展排查,目前已排查17家尾矿库企业,并将排查发现的问题交办至辖区生态环境部门督促整改。持续开展受污染耕地成因排查分析,做好受污染耕地分类治理工作。
发布时间: 2022 - 05 - 31
浏览次数:344

网站导航

在线留言

  • 姓名:
  • 电话:
  • 留言:

联系我们

地址:北京市昌平区科技园区创新路27号3  号楼2层

咨询电话:010-53108563/65/68/69
企业邮箱:jingchengruibo@163.com
服务热线:18600464353

关注我们

微信公众号
浏览手机端
Copyright ©2018 - 2021 北京精诚瑞博仪表有限公司 
犀牛云提供企业云服务
返回顶部
X
5

电话号码管理

1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

6

微信公众号

等待加载动态数据...

等待加载动态数据...

展开