• 公众号
  • 手机端
24小时销售热线 18600464353
新闻资讯 News
最新新闻 / News More
61
2022 - 11 - 28
计量测试是“工业生产的眼睛”,也是质量提升的技术基础,它在服务和支撑产业发展、提升产业核心竞争力方面有着重要作用。国家高度重视产业计量测试中心的建设,在《计量发展规划(2021—2035年)》明确提到,在战略性新兴产业、现代服务业等重点领域建立一批国家产业计量测试中心,研制一批专用计量测试设备,形成一批专用计量测试方法和标准规范,计量服务经济社会各领域高质量发展体系日趋完善。随后,各地方计量发展规划中也明确建设一批国家级、市级产业计量测试中心。比如重庆市预计到2025年建成6个市级产业计量测试中心、2个国家级产业计量测试中心;广东省提出建立一批发挥重要作用的产业计量测试中心,培育一批具有核心竞争力的仪器仪表企业,打造一批综合实力国内领先的计量技术机构等。近日,多个产业计量测试中心获批筹建,涉及材料、新能源、半导体与集成电路、轨道交通等领域。重庆拟批准筹建两家市级产业计量测试中心广东拟批准筹建广东省半导体与集成电路产业计量测试中心马鞍山市获批筹建省轨道交通产业计量测试中心安徽省轨道交通产业计量测试中心的建设工作将依托马鞍山市计量测试研究所进行,拟建设恒温恒湿实验室、几何量实验室、探伤实验室、化学实验室、力学实验室、热工实验室、流量实验室等精密测量实验室,以及碳能耗实验室、在线检测实验室等前沿高端实验室。建成后,中心将在轨道交通量值传递技术、产业关键领域关键参数测量、测试技术研究、产业...
62
2023 - 01 - 09
1、如何控制剩余污泥的排放量?污泥控制:如果曝气池进水量和有机物浓度波动较小,可以只用曝气池混合液污泥量来计算剩余污泥的排放量:剩余污泥的排放量 = 曝气池混合液污泥量 / (泥龄x回流污泥浓度) 二沉池出水污泥量。当进水量有波动时,要将二沉池的泥量也算在内。污泥浓度控制:曝气池内混合液污泥浓度一般都有个最佳值,如果高于此值,必须及时排泥。剩余污泥排放量 = 曝气池内混合液浓度与理想浓度之差 × 曝气池容积 / 回流污泥浓度。污泥负荷控制:按照曝气池内污泥量不变的原则,根据污泥负荷计算污泥的产量,并将新产生的污泥全部从系统中排放出去。剩余污泥排放量=(曝气池内混合液污泥量-进水BOD5量/污泥负荷)/回流污泥浓度。污泥沉降比控制:当测得污泥沉降比SV增大后,可能是污泥浓度增加所致,也可能是污泥的沉降性能变差所致,不管哪种情况都应该及时排除剩余污泥,保证SV的相对稳定。实践证明,对以脱氮除磷为重点的的城市污水来说,用污泥龄(SRT)控制剩余污泥排放量(Q)是一种较理想的方法。2、回流污泥量的调整方法有哪些?按照二沉池的泥位调节回流比。这种方式可避免出现因二沉池泥位过高而造成的去你流失现象,出水水质较稳定,缺点是回流污泥浓度不稳定。首先根据具体情况选择一个合适的泥位(水面到泥面距离),即选一个合适的泥层厚度(泥面到池底的距离),一般应控制在0.3——0.9m。且不超过泥位的1...
63
2023 - 02 - 20
任何产品的使用都讲究一个技巧,正确的使用可以充分发挥产品的性能和优势。当然雷达物位计也不例外,今天给大家分析一下雷达物位计测量煤气柜时的安装技巧。媒气柜是动力设备中的重要设备,随着产气量和用气量的波动,气柜不断抽气和放气,使活塞上下运动,保证了管网压力的稳定。抽进抽出气体时,气柜自动运行,中央控制室可通过安装在气柜上的雷达物位计远程测量气柜的柜体位置,并通过进出气管路上的阀门远程控制气柜。因此,准确测量其反位对于稳定管网压力、保证正常生产和正确控制放气具有十分重要的意义。雷达物位计的基本原理是发射-反弹-接收,它安装在柜体顶部,通过其天线发射的信号测量柜体的位置。雷达信号从煤气柜活塞表面反射,回波信号被天线拾取。由于信号的频率发生变化,因此回波的频率与发送时的信号相比会略有不同,该频率差距活塞面的距离成正比,可以精确计算。这种方法称为调频连续波,根据此测量原理,雷达波可以连续“射”在测量介质上,增强了其抗干扰能力,最大限度地降低了被干扰的可能性,提高其可靠性。雷达物位计的最大特点是在恶劣条件下具有出色的测量效率,无论是有毒介质,还是腐蚀性介质,无论是固体、液体还是粉状浆状介质,都可以测量。雷达物位计采用一体化设计,无活动部件,无机械磨损,使用寿命长,测量时发射的电磁波可以通过真空,不需要传输介质,具有不受大气和水蒸气影响的特点,功能丰富,具有虚假波学习功能。输入液面实际液位,可自动...
联系我们
北京精诚瑞博仪表有限公司
销售热线:400-6616-819
公司总机:010-53108563/65/68/69
总部传真:010-53108566
总部地址:北京市昌平区科技园区创新路27号3号楼2层
提高超声波传播时间测量精度是提高超声波液位计测量精度的关键。但要想显著提高超声波的测时精度并不容易:由于超声波在液体介质中的传播的速度一般在1500m/S左右,在进行液位测量时,若要精确到毫米级,则测量时间误差应在微秒范围内;在进行流量测量时,在实测的管道中,流体的流速一般在0~20m/s范围内,所以此时的时间差通常在数纳秒至微秒之间,若要求测量精度在1%以内,则测时分辨率要在0.000000001以上,所以,一般测时方法很难达到。   总结归纳了现存的多种测超声波传播时间的方法,分析了各测时方法在提高测时精度方面存在的缺陷,并在此研究的基础上,根据液位计对测时精度的要求不同提出了两种不同的时间测量方法:1、线性调频技术与超声技术相结合的用于液位测量的测时方法;2、专用于流量测量的频差-相差-时差测时方法。具体研究方法如下:   1、基础性研究   研究了超声波液位计的测量原理,通过对测量原理的研究,更加突出了提高测时精度对提高整个测量精度的重要性。   2、分析了多种现存的超声传播测时方法   研究了门限脉冲法、三传感器法和时差-相差-频差-时差测时方法的测时原理。通过对各种测时方法的分析比较,找出了各测时方法在提高测时精度方面存在的不足与缺陷。   3、直接测相间接测时方案   在传统测时方法的基础上,提出了...
发布时间: 2025 - 01 - 13
浏览次数:270
超声波液位计是通过换能器(探头)发出高频超声波脉冲,无接触测量液位的一种物位测量仪表。广泛应用于各种敞开式槽池中,用于连续性液位测量。那么,超声波液位计有哪些优缺点呢?特点和优点:主要体现在以下几个方面:  1、结构简单、读数方便、非常便于安装和维护。  2、安全清洁,仪表使用寿命长、测量稳定可靠、精度高。  3、采用非接触式测量,不易受液体的粘度、密度等影响。  当然,所谓尺短寸长。超声波液位计也有自身的局限性和无法克服的缺陷,具体说来,主要表现在:  1、超声波液位计测量存在盲区。盲区就是仪表无法测量的区域。在超声波脉冲传输过程中,超声换能器附近的小面积区域通常不能接收到声波。就收不到声波的盲区,其大小与超声波的测量距离有关。一般来讲,测量距离小,盲区就小;测量距离大,则盲区就大;  2、超声波液位计测量易受温度影响。在实际测量中,温度的变化会导致声音速度的变化,进而导致测量出现误差;  3、声波下面不宜有障碍物。由于超声波液位计是利用声波反射原理实现液位测量的,如果有障碍物会影响超声波发射,造成信号丢失,影响测量效果;  4、超声波液位计不宜用来测量压力容器。由于压力主要影响的是探头,且压力和温度之间也有一定的关系,压力的变化会影响到温度的变化,进而影响声速的变化,使测量的精度受到影响;  5、超声波液位计不能在有水雾、易产生大量泡沫性的介质、易挥发性介质的场合使用。因为这种...
发布时间: 2025 - 01 - 13
浏览次数:682
能源是一国经济和军事发展的关键基础,同时也是人们日常生产与生活的重要依赖。基于此,作为兼具水电、石油、煤炭、核能、风能等众多能源的大国,我国对于各种能源的开采、布局、发展和应用历来看重。目前,在国家政策的多方推动下,我国能源发展已经逐渐迈向现代化。但由于技术与设备的落后,以及模式的守旧,其中依然不乏一定的问题和不足,例如能源利用率不高、开采污染严重、应用成本高昂等等。 众所周知,能源和网络分别被视为工业的血液与脉搏。利用新一代通信技术,来提升行业的信息化和智能化水平,换言之就是将工业血液与脉搏相融合,让发展更具生命力。   一方面,凭借高速率、低延时、大容量的特点,5G能够应用于变电站、风电场等站场之中,让这些处于偏僻地区、施工和覆盖困难、数据传输缓慢的站场有效升级,打造出泛在感知、无人值守、无线互通的智能化站场。   另一方面,5G也能够作用于巡检机器人、巡检无人机等装备之上,通过智能化的数据分析、实时化的无线数据传输,以及便捷化的远程设备操控,来实现对能源设施、能源开采等的立体式巡检,从而保障行业正常运维。   总而言之,5G不仅能单独应用与能源各环节之中,推动能源开采、生产与应用的数字化、信息化、智能化升级,同时还能与无人机、机器人、中控室等设备协同作战,在能源管理和运维层面发挥价值。   今年以来,受疫情冲击影响,作为智慧城...
发布时间: 2025 - 01 - 13
浏览次数:364
射频导纳料位开关是通过探头感知其与储罐体间电抗(容抗和阻抗)的变化来实现物位检测与监控的。“射频导纳”中“导纳”的含义为电学中阻抗的倒数,它由阻性成分、容性成分、感性成分综合而成,而“射频”即高频,所以射频导纳技术可以理解为用高频测量导纳。射频导纳料位开关利用电桥原理,其内部的电子单元由探头测量极与空载罐体间的电抗共同组成平衡电桥电路并产生一个稳定的振荡信号。当被测介质覆盖探头的测量极时,便会引发探头测量极与罐体间的电抗变化,导致电桥电路不平衡,从而停止产生振荡信号,再由后级电路检测到这一变化后输出信号报警。该振荡信号作为射频信号施加在探头测量极的同时,再经过1:1的电压跟随器送往探头的保护极。 测量极与保护极的射频信号具有等电位、同相位、同频率又互相隔离的特性。 当探头有挂料时,测量极与保护极之间因为没有电势差而形成电气隔离确保保护极的信号变化不影响检测,使探头测量极上电抗的变化只能由探头测量极与罐体间的物料决定,从而使探头上的挂料不会影响正常检测。随着工业自动化程度的日益提高,物位开关在工厂生产中也得到越来越广泛地应用,这极大地便利了工厂的生产与管理。 但有些物位开关有其局限性,像对于过于粘稠的物料,某些物位开关就不能够准确地测量,而射频导纳料位开关却能很好地克服这一难点。相对于其他物位开关,射频导纳料位开关具有更强的稳定性,即使环境变化大也不会影...
发布时间: 2025 - 01 - 10
浏览次数:214
近年来,随着我国工业水平的不断提高以及我国工业自主创新能力的不断提升,我国国内的仪器仪表行业得到了迅猛的发展。其中,作为液位测量仪表中效果显著的代表,雷达液位计被广泛应用工业生产作业的各个领域中。那么,雷达液位计又是如何被应用在罐区自控系统当中的呢?首先,在众多液位测量产品中,雷达液位计作为一种新型仪表,它主要是通过对油轮的液面测量上不断完善更新问世的,该产品除了具有众多液位计共有的产品特质之外,还拥有普通液位计所没有的产品优势。因此,在罐区自控系统当中发挥着十分重要的作用。随着我国石油储备需求量不断增加,液位检测控制成为了罐区自控系统的最主要仪表。而雷达液位计凭借自身的产品优势,成功解决了之前一些仪表检测仪表元件易被介质污染、腐蚀等诸多难题。 同时,该产品发射的电磁波,能可靠地测量其它液位测量仪表所达不到的液位测量精度。 另外,雷达波还能穿透泡沫、烟雾、蒸汽等介质,而不受变化的环境影响,能可靠地测量其液位的精确值。 因此,该产品的优势被发挥的淋漓尽致。如您对雷达仪表有什么问题,可以在线咨询或拨打电话400-6616-819,北京精诚瑞博将会竭诚为您服务!
发布时间: 2025 - 01 - 10
浏览次数:628
雷达料位计是一种免维护仪表,可长期可靠运行。实际应用中,常见的故障多是有干扰回波引起。常见故障及处理方法如下:、1、仪表无指示处理方法:查电源,查通讯电缆是否正常2、仪表有故障代码处理方法:清除故障代码。若清除不了,参照故障代码列表,进行相应处理或与厂商联系3、选型不合理处理方法:对介电常数小的被测介质或应用于复杂的环境,尽可能选处理干扰同波功能强的。尽可能选喇叭口型天线,尺寸尽可能大一些。4、安装位置不当处理方法:按要求选一最佳位置。5、参数设置不合理处理方法:对仪表复位,重新设定参数。在投用前,基本参数必须正确设置.如低位、高位设置是否正确.应用条件是否符合实际情况.其他一些参数如时间常数,在物位变化太快使测量值不稳定时,可适当增大时间常数值。6、天线污染处理方法:定期清理天线。尽可能避免物位溢出。这样会使喇叭口天线上挂料,减低雷达灵敏度.7、对固定障碍物引起干扰的处理处理方法:进行A假回波抑制或虚假间波存储,对物位以上,已测得的虚假回波,在确认是假回波后.自动编辑到虚假回波列表中.对物位以下.将会引起的假回波,也可手动编辑到虚假回波列表中。综上所述,雷达料位计只要合理选型正确安装,它能在生产中发挥卓越的性能。随着雷达达料位计价格的下调。雷达技术在高温、耐压等方面技术的日臻完善,雷达料位计将会得到更广泛地应用。
发布时间: 2025 - 01 - 10
浏览次数:405
雷达料位计只要合理选型正确安装,它能在生产中发挥卓越的性能。雷达技术在高温、耐压等方面技术的日臻完善,雷达料位计将会得到更广泛地应用。那么,现在来随我来看一组用户的安装指导现场吧~总结 雷达料位计的选取并没有大家想象中那么困难,一般情况下,首先需要考虑现场工况情况。罐体形状、安装位置、介质常规参数等等很多因素共同决定了我们选取什么型号的物位计应用于现场是最合适的。
发布时间: 2025 - 01 - 09
浏览次数:399
1804页次21/258首页上页...  16171819202122232425...下页末页

网站导航

在线留言

  • 姓名:
  • 电话:
  • 留言:

联系我们

地址:北京市昌平区科技园区创新路27号3  号楼2层

咨询电话:010-53108563/65/68/69
企业邮箱:jingchengruibo@163.com
服务热线:18600464353

关注我们

微信公众号
浏览手机端
Copyright ©2018 - 2021 北京精诚瑞博仪表有限公司 
犀牛云提供企业云服务
返回顶部
X
5

电话号码管理

1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

6

微信公众号

等待加载动态数据...

等待加载动态数据...

展开