• 公众号
  • 手机端
24小时销售热线 18600464353
新闻资讯 News
最新新闻 / News More
1
2019 - 07 - 08
高 频 雷 达 物 位 计1、产品概述 RBRD16传感器是26G高频雷达式物位测量仪表,测量最大距离可达20米。天线被进一步优化处理,新型快速的微处理器可以进行更高速率的信号分析处理,使得仪表可以用于反应釜、固体料仓等一些复杂的测量条件。●原理雷达物位天线发射较窄的微波脉冲,经天线向下传输。微波接触到被测介质表面后被反射回来再次被天线系统接收,将信号传输给电子线路部分自动转换成物位信号(因为微波传播速度极快,电磁波到达目标并经反射返回接收器这一来回所用的时间几乎是瞬间的)。反26G雷达物位计特点:●天线尺寸小,便于安装;非接触雷达,无磨损,无污染。●几乎不受腐蚀、泡沫影响;几乎不受大气中水蒸气、温度和压力变化影响。●严重粉尘环境对高频物位计工作影响不大。●波长更短,对在倾斜的固体表面有更好的反射。●波束角小,能量集中,增强了回波能力的同时又有利于避开干扰物。●测量盲区更小,对于小罐测量也会取得良好的效果。●高信噪比,即使在波动的情况下也能获得更优的性能。●高频率,是测量固体和低介电常数介质的最佳选择。
2
2020 - 03 - 23
我国是一个地域辽阔,工业种类齐全的国家,所以在物位仪表方面需求量很大,导致竞争也很激烈,那么雷达物位计厂家怎么才能获得更多的市场份额呢?1、加大研发力度,开发、生产出高档先进的物位计仪表;2、引进先进的科学技术和管理理念,依靠高质低价取胜;3、注重品牌文化建设,大力打造知名品牌,靠品牌的力量抢占市场份额;您可以通过微信公众号、微信小程序、百度网站搜索、百度知识问答、爱采购网站、阿里巴巴网站、360网站搜索以及各种仪表会展活动等各种途径找到我们北京精诚瑞博仪表有限公司,期待与您相遇!4、采用更加个性化的营销方式,全面利用互联网等新媒体开展企业营销;5、提升售后服务的品质,用最人性化的服务服务广大消费者。
3
2020 - 05 - 28
接触式说明原理:依据时域反射原理(TDR)为基础的雷达物位计,雷达物位计的电磁脉冲以光速沿杆式或缆式天线传播,当遇到被测介质表面时,雷达物位计的部分脉冲被反射形成回波并沿相同路径返回到脉冲发射装置,发射装置与被测介质表面的距离同脉冲在其间的传播时间成正比,经计算得出液位高度。优势:在一些特殊工况导波雷达有明显的优势如:罐内有搅拌,介质波动大,这样的工况用底部固定的导波雷达测量值要比变通雷达稳定;还有小罐体内的物位测量,由于安装测量空间小(或罐内干扰物较多),一般普通雷达不适用,这时导波雷达的优势就显现出来了;再有是低介电常数的工况,无论雷达还是导波雷达测量原理都是基于介质介电常数差别,由于普通雷达的发射的波是发散的,当介质介电常数过低时,信号太弱测量不稳定,而导波雷达波是沿导波杆传播信号相对稳定,另外一般的导波雷达还有底部探测功能,可以根据底部回波信号能测量值加以修正,使信号更为稳定准确。应用:用应用于水液储罐、酸碱储罐、浆料储罐、固体颗粒、小型储油罐。如:煤仓、灰仓、油罐、酸罐等。非接触式说明原理:采用高频波脉冲通过天线系统发射并接收,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。优势:对液体、颗粒及浆料连续物位测量。雷达物位计的测量不受介质、温度、惰性气体、蒸汽、粉尘、泡沫等的影响,适用于爆炸危险区域。应用:不与介质直接接触,安装方便。测量固体物量时不必考虑物料对...
联系我们
北京精诚瑞博仪表有限公司
销售热线:400-6616-819
公司总机:010-53108563/65/68/69
总部传真:010-53108566
总部地址:北京市昌平区科技园区创新路27号3号楼6层

被二氧化碳吞噬的大海:海洋酸化问题现状、影响及展望

发布日期: 2022-03-30
浏览人气: 958

  自2021年政府工作报告将“双碳”目标列入工作计划以来,“碳达峰”、“碳中和”等关键词频繁出现在各部委指导文件、行业规划乃至大众视野中,中国由此进入“碳中和元年”。作为全球最大的温室气体排放国,中国推进“双碳”目标实现的决定对于全球应对气候变化具有至关重要的作用,同时也对国内高碳行业低碳转型与普通行业绿色发展提出严峻挑战。中国亟需在推进各行业节能减排的同时,探索新路径,力促“双碳”目标如期达成。随着二氧化碳排放总量与强度的不断增加,海洋酸化等问题也使其作用及可持续性不断受到威胁,需要进一步的深入研究与解决措施以降低其对“双碳”目标实现的阻碍。本文主要针对海洋酸化的问题影响、现状以及展望进行简要分析和探讨,抛砖引玉,以飨读者。

被二氧化碳吞噬的大海:海洋酸化问题现状、影响及展望

  一、海洋酸化议题阐述


  (一)海洋酸化的概念


  海洋酸化即由于海洋吸收、释放大气中过量二氧化碳(CO₂),使海水pH酸碱值下降、逐渐变酸的反应过程。自工业革命后,由于化石燃料的燃烧和土地使用的改变,大气中二氧化碳浓度不断增加。在海洋吸收了大气中释放的约30%的二氧化碳后,二氧化碳在海水中发生一系列化学反应导致氢离子浓度增加,从而促使海水酸性更强并减少碳酸根离子的含量。而碳酸根离子是构成海壳和珊瑚骨架等结构的重要组成部分。碳酸根离子的减少将使牡蛎、蛤蜊、海胆、浅水珊瑚、深海珊瑚和钙质浮游生物等钙化生物难以建立和维持外壳和一些其它身体结构,并影响某些非钙化生物的生存状态,例如某些鱼类的探测捕食能力在酸性较强的水域中将有所下降,从而逐渐影响并威胁到整个食物链及生态网。


  (二)海洋酸化的影响


  1、生态影响


  海洋酸化将对海洋内栖息的动植物及其所处生态环境造成巨大的破坏。


  对于动物而言,对于海洋中广泛分布的鱼类,酸性更强的环境将改变鱼细胞中酸性平衡进而导致酸毒症。海水酸性的轻微改变都需要大量额外能量让鱼恢复其体内的酸碱平衡,酸性海洋环境将剥夺鱼其它器官工作所需能量进而影响其生存与生长。对于牡蛎、蚌类、海胆与海星类有壳动物在酸性更强的环境中将像珊瑚一样更难形成外壳,而乌贼和海星用碳酸钙建造的壳状部分将溶解得更快,届时这些生物外壳将会更加脆弱,增加其被压碎或被进食的风险。此外,处于海洋食物链中重要角色的浮游动物,其本为碳循环的关键。当带壳的浮游动植物死亡并沉入海底时,其碳酸钙壳会以岩石或沉积物的形式积累,这也是从大气中清除二氧化碳的重要途径。而海洋酸化的环境下,两大浮游生物之一的有孔虫外壳将迅速被溶解,其并不能很好地在较高酸度的环境生存。

被二氧化碳吞噬的大海:海洋酸化问题现状、影响及展望

  对于植物及藻类而言,其可通过结合阳光和二氧化碳产生能量,因而水中更多二氧化碳将不会伤害它们,植物和许多藻类能在酸性条件下茁壮成长。造礁的珊瑚需通过碳酸钙打造自己的家园并形成复杂的珊瑚礁,而珊瑚动物本身可容纳大量其它生物供以栖息。海洋酸化可能通过腐蚀已有的珊瑚骨架来限制珊瑚的生长、减缓新珊瑚骨架的生长,由此产生的相对脆弱的珊瑚礁将更容易受到来自风浪与其它动物的侵蚀。同时,海洋酸化还将伤害珊瑚幼虫等依附于珊瑚藻生长的生物。


  2.经济影响


  我国是世界上最大的水产大国,贝类养殖产量约占全球总量的85%。健康发展的水产产业在保障国家粮食安全、丰富动物蛋白种类、维持沿海海区稳定、拓宽就业渠道、增加农渔收入、维持沿海渔区稳定、清洁海域水质和固碳汇碳等方面都发挥着至关重要的作用。海洋酸化引起的碳酸钙溶解直接影响如贝类、甲壳类等钙质生物,给海洋生物的生存带来极大挑战,进而破坏整个食物链。未来,在pH值较低的海水中,为保护自己,钙化生物会越长越小、外壳越来越厚,其作为饵料价值也将随之下降,届时将对食用贝类养殖产业造成很大的打击。


  此外,海洋酸化还将影响海洋生物体内不同生化结构的成分和比例,改变生物群落的结构和组成,从而影响海洋食物网中物质、能量与营养的传递并最终影响海产品的品质甚至危及人类健康。据估算,海洋酸化对中国贝类产业的潜在影响巨大,未来100年内中国贝类产业经济可能面临142亿—11500亿美元的限制现值损失,损失程度与海洋酸化程度将正向相关。

被二氧化碳吞噬的大海:海洋酸化问题现状、影响及展望

  二、国内外海洋酸化问题现状简述


  (一)国内海洋酸化问题及蓝碳发展现状


  党的十八大将生态文明建设放在前所未有的重要地位,强调要将生态文明建设融入经济建设、政治建设、文化建设、社会建设各方面和全过程,不少沿海地方已认识到健康的海岸带生态系统对于经济发展的正面作用,积极保护和恢复海岸带生态系统。与此同时,在我国经济进入新常态、基础设施投资逐步回落的情况下,沿海地方对通过围填海扩张城镇和工业建设的需求已大幅降低,为保护和恢复蓝碳生态系统创造了有利条件。然而,我国对海草床和滨海沼泽的保护仍十分有限,这两类蓝碳生态系统基础科学研究、保护和恢复工作亟待加强。贝类、藻类养殖增汇(增汇指增加能够储存碳的汇,比如森林、海藻等)途径主要包括增加养殖面积和提高单位养殖面积碳汇量两个方面。目前的海水养殖主要集中在水深20米以浅的区域,-20——-40米等深线之间的养殖活动几乎为空白。同时由于我国养殖品种固碳率及养殖技术营养层次有限且单一,无法适宜不同区域环境,因而单位养殖面积的产量与碳汇量也受到限制。关于海洋牧场建设也是提高局部海域碳汇能力的重要途径,这一领域仍有待进一步关注和研究。


  此外,目前为止我国仍未参与包括“蓝碳倡议”、“国际蓝碳伙伴”等在内的国际蓝碳合作平台,缺乏与国际蓝碳科学界和相关国家、国际组织交流的渠道;我国科学家提出的渔业碳汇、微型生物碳泵等概念或设计对国际蓝碳科学和政策的影响力有待提升。


  (二)国际海洋酸化问题现状


  目前全球海洋酸化问题正快速恶化。据英国卡迪夫大学发布的研究结果显示,海洋酸化已达到1400万年未见的水平。全球表层海水的平均pH值为8.1,预计到2100年将下降到7.8,意味着酸度将增加75%。美国国家环境保护局(EPA)正努力减少导致酸化的两类污染:二氧化碳排放和水质营养过剩。此外,EPA正与其它组织合作监测海洋和沿海酸化情况,努力解决、减少导致海洋和沿海酸化的污染物,包括二氧化碳排放、酸雨、富营养化等过程形成的污染物。在欧洲,国家政策和针对海洋酸化的行动仍未统一。挪威对海洋酸化方面的研究和行动方面表现出了积极主动的态度,但大多数欧盟成员除意大利和荷兰外,并没有表现出很充分、主动的对海洋酸化及相关问题的积极态度或承诺。


  三、对海洋酸化问题的展望


  未来,海洋酸化问题会面临更多挑战和危机。据科学家预测,到2050年世界上86%的海洋将比现代历史上任何地方都更暖、更酸。到2100年,表层海洋的pH值可能会降至7.8以下,与今天依然具有腐蚀性酸化状态相比,可能会再下降150%以上——在地球上一些特别敏感的地区,比如北冰洋,这个数字可能会更高。


  减缓气候变化影响,可通过碳交易将沿海湿地纳入碳市场,类似方法还有碳税等,都能够在私有化环境问题的同时帮助创造经济营收或政府收入,而这些收入又可以再次投入到社会的不同方面包括环境、教育、基础设施等。除此之外,政府的相关政策、人们的环保意识等都将是实现海洋、环境保护及碳中和目标的重要途径和方式。


  人类活动释放到空气中的二氧化碳被海洋吸收导致海洋酸化,对健康、环境、生态和经济发展皆产生了不同程度的影响,且已引起许多国家和国际组织的重视、关注、与研究。海洋作为各国共通的自然资源,需要世界共通正视,制定应对措施且采取行动,促进海洋环境与人类社会的和谐发展。

推荐新闻

网站导航

在线留言

  • 姓名:
  • 电话:
  • 留言:

联系我们

地址:北京市昌平区科技园区创新路27号3  号楼6层

咨询电话:010-53108563/65/68/69
企业邮箱:jingchengruibo@163.com
服务热线:18600464353

关注我们

微信公众号
浏览手机端
Copyright ©2018 - 2021 北京精诚瑞博仪表有限公司 
犀牛云提供企业云服务
返回顶部
X
5

电话号码管理

1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

6

微信公众号

等待加载动态数据...

等待加载动态数据...

展开